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In this paper, we present a model based on Data-Flow Graphs called Interactive Data-Flow Graph (IDFG) 
model. ]'his model is used in the context of a CASE tool (SEPDS) for the specification of distributed interactive 
applications. Our effort was towards designing a model that would bridge the gap between designers and users 
perspective by providing the designers with a model that would permit them to "think in users terms". IDFG 
combines elements of control and data models together with characteristics of the object (~iented paradigm, 
adopting an action-based description of user goals. It is this focus on user actions that gives IDFG a phenomeno- 
logical nature. In addition, IDFG can be combined with the underlying data model of SEPDS in a straightforward 
manner, enabling the prototyping of distributed interactive applications. We show that IDFG meets many of the 
requirements that designers have from current interactive application specification systems, such as user-specified 
level of abstraction of interaction specification, support of mixed-initiative dialogues, modularity and reusabil- 
ity of interaction. We conclude the paper by presenting a simple example of the application OF IDFG and by 
presenting the state OF our research. 

1. I n t r o d u c t i o n  

The SEPDS (Software Environment for the 
Prototyping of Distributed Systems) system is an 
engineering f~amework for the prototyping of dis- 
tributed systems. It provides an integrated set of 
tools that assist the designers through the pro- 
totyping, simulation and profiling phases of the 
construction OF a distributed system [7]. Specifi- 
cation OF interactive applications in SEPDS con- 
sists OF two major phases: the specification of 
the "workings" of the application and the spec- 
ification of its interactive features. The tools of 
the former subsystem were designed and imple- 
mented based on the Extended Data-Flow Graph 
(EDFG) concept, which is itself an extension OF 
the Da ta - f low Graph (DFG) concept [6]. In this 
paper, we will describe IDFG (Interactive Da ta -  
Flow Graph) model, which is used by the tool- 

s of the User Interface Generating Environment 
(UIGE), to construct the user interface of the tar- 
get (produced) application. A description of the 
process of application specification can be found 
in [5]. 

The scope of the design was to bridge the gap 
that usually exists between the designers and 
users model of an interactive application. To this 
end, IDFG enables the designers "think in user- 
s terms", thus allowing for consideration of the 
users preferences and abilities [8] and support- 
s the designers in specifying the interactive fea- 
tures of the application in a non-technical way, 
leading to a semi-automated user interface con- 
struction process based on the semantics of the 
application graph. In addition, integration and 
combination of such a model with EDFG, the da- 
m model that SEPDS uses for application speci- 
fication, is straightforward [1]. 
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616 A. Kameas et al. 

In the specification of interactive applications, 
both these models are used: IDFG models the be- 
havior of application objects, while EDFG models 
their functionality. In this way, designers do not 
have to use additional effort to learn a new speci- 
fication language, and the prototyping subsystem 
of SEPDS is able to produce highly-interactive 
applications with few changes. 

The model we present combines features from 
both state-based models (e.g. [4, 9]), which incor- 
porate powerful control models, but do not ban- 
cue data and user models well (such models are 
adequate for the fine-grained, low-level specifica- 
tion of user actions and action sequences, but are 
hard to use by non-computer  experts), and user- 
oriented models (e.g. [3]) which focus on rep- 
resenting interaction with interconnected plan- 
s of various levels of detail and complexity, to 
meet the needs of all the categories of users be- 
tween novice and technically expert. Description 
of the elements of the screen has been separat- 
ed t~om the specification of actions that may be 
performed with these dements,  leading to a more 
user-centered design. IDFG is action-oriented, 
assigning to user actions well-defined semantics 
based on the goal-based structuring of these ac- 
tions, thus making the screen elements that repre- 
sent these actions "invisible" (the ready- to-hand  
phenomenological property [12]). 

A model (Propositional Production Systems - 
PPS) with similar characteristics was proposed 
in [10]. PPS systems however, are inadequate for 
our purpose for two reasons: they do not repre- 
sent explicitly the user perspective and way of 
thinking (although they permit abstractions of 
the interaction to be formed), and they can not 
be integrated in SEPDS without adjustments. 

Both EDFG and IDFG can be proved equiva- 
lent in expressiveness with Petri Net models that 
use time stamps. Although Petri Nets have been 
used before for representing interaction [2], IDFG 
has certain representational advantages: first, it 
is a more "compact" model, and thus, easier to 
use by the non expert designer. In addition, in 
IDFG we use semantic (and not technical) de- 
scription of actor interaction (that is why links 
are typed and labeled). Furthermore, in IDFG, 
user actions and goals are explicitly represented; 

the same is true for system actions and screen 
condition. Finally, IDFG supports events caused 
both by the user and the system (modelled as 
user and system actions). This means that the 
system could as well initiate the execution of cer- 
tain tasks, thus laying the modeling base for the 
specification of intelligent user interfaces. 

In the next section, our contribution, the IDFG 
model, is described along with its most important 
properties. A discussion on the models properties 
follows with an example of an application of the 
model. The paper concludes with a presentation 
of our research directions. 

2. The IDFG model  

An IDFG is a bipartite graph consisting of a set 
L of links and a set A of actors. Actors are the 
computational components, while links are used 
for dark transportation. There also exists a set E 
of directed arcs which connect actors to links and 
links to actors. The function each actor performs 
consists of two parts: the behavioural part, which 
is made up of rules, and the functional part, which 
contains code segments. For every rule of the be- 
havioural part, there exist a set of left-hand-side 
conditions that must hold for it to fire, and a set 
of right-hand side conditions that result from the 
firing. These are represented by the PRE and the 
POST fields, respectively, of the actor. A restric- 
tion that applies is that no two tokens of the same 
link may be consumed in the same actor firing. 
The code segments of an actor (which are repre- 
sented with field FUN) are EDFG actors; this is 
how IDFG can be integrated with the underlying 
model of SEPDS. 

Links correspond to conditions; those that cur- 
rently contain tokens describe the current situa- 
tion. Links are typed (mainly to distinguish be- 
tween the components of a situation). The types 
of links are contained in the set { user actions, 
system actions, object conditions, goals, incom- 
munica~ion, outcommunication }. To improve ex- 
pressibility, more link types can be added to this 
set. 

Two additional constraints are imposed on the 
system: 

• every actor mast have a link of type user 
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action or system action in its PRE, which 
means that state transitions take place only 
as a consequence of an event (user or system 
action) 

• each user action must belong to a goal- 
leading sequence, that is why, each actor 
has also a link of type goal in its P R E  and 
P O S T  (a goal link in the POST is used to 
signal successful goal achievement) 

Actors can be of two kinds: action actors and 
context actors. With each action offered by the 
application to its users (that is, with each com- 
mand that is transferred by the user interface 
to the underlying application), an action actor 
is associated. The number of action actors is fi- 
nite and equal to all the commands supported by 
the application. In order for such an actor to be 
ready-to-fire,  all links in its PRE except user cf 
system action links must already contain token- 
s. This means that the user interface must have 
reached the appropriate state (as represented by 
the condition ]inks) and the actor must belong in 
one of the contexts the user is currently working 
with (as represented by the goal ]ink) for the user 
action to be available (any missing ]inks are in- 
terpreted as "don' t  care" conditions). The effects 
Of its execution are modelled with the production 
of tokens in the actor's POST. 

To model context Of operation and to support 
the goal-based structuring of user actions, we use 
context actors. Their functionality is to correct- 
by interpret user actions in order to appropriately 
decompose user goals into subgoals, so that even- 
tually the correct action actor will fire. To in- 
fer the context of operation, these actors contain 
rules that fire depending an the user interface ac- 
tion that the user performs. Context actors may 
be formed by combining action actors or context 
actors; this process may be applied an adequate 
number of times so as to represent all user goals 
and subgoals. 

Commands are modelled with actor firings, 
and sequences Of commands with actor firing se- 
quences (graphs). Any portion Of an IDFG could 
be executed if tokens were created on the PRE of 
the first actor of the sequence. Thus, if we were to 
start the system from an arbitrary situation, we 

would have to provide a mechanism that would 
create tokens on the links of the actors that must 
be fired first. 

To transparently support interaction across dis- 
tributed contexts, we require that there exists one 
separate IDFG for each autonomous application 
process. In such a system, we have to model the 
effects that processes of this kind may have on one 
another. To this end, we use a special link type, 
the oommunication type. In effect, there exist /n_ 
communication and outeommunication link types 
to account for the direction of communication. 
The actors that contain rules that result in inter- 
contextual communication are called oammunica- 
~ion actors [11]. On the other hand, links of type 
system action are used to model system-initiated 
communication among actors of the same IDFG. 

2.1. Actor composition 
When context actors are constructed, the con- 

struction process must be defined, together with 
the ]ink types and the execution semantics of the 
resulting actor. As far as goals and user and sys- 
tem actions are concerned, lower level goals are 
derived from user or system actions and goals of 
the next higher level. To achieve such a trans- 
formation when a context actor is formed, we use 
Primitive Graphs (PGs) to specify the type of the 
context actor. 

Actor composition is a model property that en- 
ables the designer define subgraphs that would 
correspond to user goals, with the context Of us- 
er actions encapsulated in their structure. These 
subgraphs have many valuable properties, like 
integral design and execution, incremental goal 
representation, reusability of interaction portion- 
s, and may be used for the automated production 
Of user interfaces which are specified by the de- 
signer in a goal-structured way. 

2.2. Types of context actors 
PGs are special actors with well-defined execu- 

tional semantics, which represent basic operations 
that come up often enough to make us represen- 
t them in a distinct way. The PGs that we will 
use are: And PG (APG), Or PG (OPG), Not PG 
(NPG), Sequence Start (SEQS), Sequence Con- 
tinne (SEQC), Sequence End (SEQE), Enable 
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(SA) ISA) 

Figure 1. The four types of context actors used 
in IDFG model 

(EN), Repeatedly Enable (REN), Concurrently 
Enable Start (CENS) and Concurrently Enable 
End (CENE) (their functionality can be deduced 
f~om the example at section 3.4), while some of 
them are analytically described in [11]. PGs may 
be used to model link combinations and actor in- 
terrelation and are needed because complex ac- 
tors model situations that are difficult to repre- 
sent analytically. 

Context actors (depicted in figure 1) are of the 
following types (in all figures containing IDFGs, 
we have used thick circles to represent user ac- 
tion links, plain circles to represent other links, 

rectangles to represent actors, double-line rectan- 
gles to represent EDFG actors, filled rectangles to 
represent communication actors and round-edge 
rectangles to represent PGs): 

Sequence (SA): this actor decomposes a high- 
er level goal and action to a lower level set of goals 
that must be achieved sequentially. After the se- 
quence is initiated (as signalled by PG SEQS), 
each actor in the sequence is ready to fire. An 
actor fires after the appropriate event takes place 
and the previous actor has successfully terminat- 
ed execution (PG SEQC). The construct is exited 
after the last actor in the sequence has terminated 
execution successfully (PG SEQE). 

O n e - o u t - o f - m a n y  (OMA): this actor de- 
composes a higher level goal and action to a lower 
level set of goals, one of which will eventually be 
achieved (this situation is equivalent to providing 
the user with different decision paths). All actors 
are ready to fire (as signalled by PG EN); the one 
that will eventually fire is determined by the nex- 
t event. The construct is exited when (me actor 
terminates execution successfully (PG OPG). 

A l l - independen t -o f - sequence  (AISA): this 
actor decomposes a higher level goal and action to 
a lower level set of goals, all of which must eventu- 
ally be achieved, but the sequence of achievemen- 
t is not important (this situation is equivalent to 
providing the user with alternative decision path- 
s). All actors are ready to fire; the firing sequence 
is determined by the next event (PG REN). The 
construct is exited when all actors have terminat- 
ed execution successfully (PG APG). 

Concurrent  (CA): this actor decomposes a 
higher level goal and action to a lower level set 
of goals, one or all of which will eventually be 
achieved, but the sequence of achievement is not 
important (the construct is initiated with PG 
CENS). The difference here is that subgoals may 
be achieved concurrently, enabling the user to 
work with several contexts at the same time. The 
construct is exited when all IDFGs terminate ex- 
ecution successfully (PG CENE). 

3. Application of the model 

In this section we discuss some general proper- 
ties of IDFG model and present an example of its 
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application. 

3.1. A b s t r a c t i o n  and inhe r i t ance  
Inheritance, as contrasted with composition 

which is a model property, is an implementation 
property. In IDFG, inheritance is incorporated 
by abstracting away the functionality of actors, 
much like in the object-oriented paradigm. To 
incorporate inheritance, we use field INHERITS, 
which may be used to represent whether an actor 
inherits the functionality of one or more classes 
of actors (multiple inheritance), or is a primitive 
one. 

Abstraction can be used to improve reusability 
when the specified user interface will be imple- 
mented by the system. Reusability is achieved by 
using slofs in the PRE and POST of the actors. 
Slots are also typed, and can accept rinks of the 
same type only. In this way, designers will not 
have to start f~om scratch each time they pro- 
duce a new application. Conversely, subgraphs 
that represent user goals at any level can be s- 
tored in a library and reused or adapted to the 
needs of the new application. 

3.2. Prototyping of applications 
Prototyping of applications is a task of SEPDS, 

and therefore its description is not entirely within 
the context of this work; we will however, give an 
outline of the process, while more can be found 
in [7]. 

SEPDS supports the top-down refinement of 
system prototypes; this process consists of two 
steps: object (actor) refinement and functional 
refinement. In addition SEPDS supports the par- 
titioning of the prototype in order to find a more 
appropriate size of objects and exploit the par- 
allelism inherent in the application. The appli- 
cation specification models supported by SEPDS 
offer the appropriate constructs (for example, ac- 
tor composition, inheritance, actor abstraction, 
PGs etc) to support these processes. The proto- 
typing subsystem of SEPDS consists of the DFG 
Modeler and the Template Manager. The former 
provides the tools for building and maintaining a 
DFG, while the latter contains tools for maintain- 
ing a software base and for building an executable 
prototype. Note the key role of PGs in prototyp- 

ing: the designer must eventually program the 
functional part of actors (or use an actor from 
the actor base); PGs however, are code segments 
automatically provided by the system. 

For example, in IDFG, we assume that there 
exists an ezternal event-handler, (EEH) which 
gets user input and sends it to the other IDFGs. 
EEH should not wait for response to the token 
it communicates; instead, it must communicate 
a token each t/me a user action is recorded and 
Menti~ed. 

3.3. The  phenomenological nature of I D F G  
model  

The interaction specification model must help 
the designers transfer effectively the model of the 
application in their minds to the end-users of the 
target application. That  is why it must enable 
the designers think in users terms. When using 
a system, users have in mind a goal they want to 
achieve, and try to do that through a sequence 
of operations that the system supports. If the 
system is interactive, users adapt their next Ol>- 
e.ration to the effect that the last (or a sequence 
ending with the last) produced. One cannot help 
noticing a recursion in this description: to achieve 
the overall effect, users must achieve intermediate 
effects. 

Defini t ion 1. Act ion:  every operation user- 
s perform, which may affect their goal-pursuing 
strategy; usually, each action is reflected in the 
user interface. The set of actions includes al- 
l the operations supported by the user interface 
and the application, as well as those actions that 
may be taken by the system itself. Subsequences 
of actions lead to the achievement of subgoals, 
whether users intended to pursue them or not. 

The emphasis must be placed on the availabilty 
of actions: users in every moment think of avail- 
able actions that will lead to their goal. At any 
moment, a set of actors (the actor-ready fist) con- 
tain tokens in all their PRE rinks except the ac- 
tion rink. These actors represent the actions that 
are available to the user (or the actions that the 
system may take). 

Traditional DFG models interpret the notion 
of state as the distribution of tokens on the DFG 
finks. Our model extends this notion: 
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VALVE I 

0 © 0  
G Y R 

QUE ALE 
RY RT 

[ SNUTDOWN 

VALVE 2 

0 0 0  
G Y R 

QRU•y ALE 
RT 

SHUTDOWN I 

I REPORT SCREEN I 

Figure 2. The user interface of the example ap- 
plication 

Defini t ion 2. S ta te  is the set of actors in the 
actor-ready list, ~ equivalently, the set of user or 
system actions that the actors in the actor-ready 
list represent. Since these actions correspond to 
goals in a lower-level, we may equivalently say 
that state is represented with the set of goals 
that may be achieved as a consequence of user 
of system actions permitted by the actors in the 
actor-ready list. 

Def in i t ion  3. S tate  t rans i t i ons  occur as a 
consequence of an actor firing which causes the 
output of tokens in the actors OFS links, mod- 
ifying the actor-ready list. Note that although 
an actor firing may affect links of object condi- 
tion type, these are invisible, as far as the user is 
concerned. 

Since, however, an actor firing depends on it- 
s PRE, it is dear  that among a set of otherwise 
identical actors that are ready to fire (the actor-  
ready list), the one that fires is determined by the 
link of type user action. That  is why we claim 
that our model has phenomenological properties 
[12]. Note in addition, that the firing actor may 
be determined also by a link of type system ac- 
tion. This enables us to model systems where 
state transitions may occur independently of user 
actions, such as knowledge-based systems (where 
the system itself may initiate a phase of inter- 
action) and real-time systems (where the system 
may have to take default actions on the absence of 
human response within a pre-specified time lira- 

it). In order to correctly recognize the context of 
the next event, each independent IDFG has its 
own locus of control, which is used to determine 
the next actor that will fire. Fkrthermore, this 
property can be used for the resolution of firing 
conflicts: all actors that can eventually fire, do 
so, and the consequences of firing appear in the 
graph in the form of a new marking. 

To construct an application using IDFG, a de- 
signer must think of the goals and subgoals that 
a user may achieve using the application, the ac- 
tions that need to be made available to the us- 
er, and the action sequences that lead to these 
goals. The objects affected by users actions are 
directly dependent on the context of operation, 
and thus are not so important (these are raninly 
used to represent screen effects of user actions, 
and not as carriers of semantic information). De- 
signers are therefore forced to think in a more 
"goal-oriented" and "goal-efficient" way, which 
we believe, comes closer to a users way of think- 
ing when using an application. 

3.4. An  e x a m p l e  
To demonstrate the capabilities of IDFG, we 

will use it to describe a simple interactive appli- 
cation, where a user checks two screens that show 
the condition of two ~dlVeS and acts according- 
ly (figure 2). Each screen contains three lights: 
green light means that valve is OK, yellow light 
means that valve is not functioning in its full ca- 
pability and red light means that valve is malfunc- 
tioning. The user may react to valve condition by 
first querying a database about ~alve condition 
readings and then either sounding an alarm, or 
shuting down the valve. Although the two valves 
reside in remote sites, the user can handle them 
concurrently. To keep the application simple, we 
assume that the system imposes no real-time re- 
quirements (m the user. 

Figure 3.a shows that the user may work with 
any of two screens (context actor of type CA is 
used for actors V1 and V2; note that at this level 
of design, the location of actors is not importan- 
t). To represent the functionality of each screen, 
each actor is analyzed (figure 3.b). It seems that 
(context actor of type SA) first a light is turned 
on and subsequently the user must press check 
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button (communication actors LGT and CHK, 
each of which must contain an EDFG actor) and 
then act (context actor ACT of type OMA) by 
pressing either alert or shutdown button (SEPDS 
actors ALR and SHD in figure 3.c, respectively). 

Figure 4 contains the description of some of the 
actors of figure 3. 

4. Conclusions 

We have described IDFG, a DFG-based model 
that can be used for the specification of inter- 
action features of distributed applications. This 
model explicitly represents events (user and sys- 
tem actions), event effects (object conditions) 
and user plans (goals), enabling the designers 
to describe apphcations from the users perspec- 
five. Although IDFG combines state represen- 
tation with rule-based description of execution, 
emphasis is placed on availability of actions to 
the user, giving this model a phenomenological 
nature. IDFG can be proved equivalent to Petri 
Net models, and in addition, it is more expressive 
and easy to use by the non-technical designer. 

Furthermore, by integrating data, control and 
user models, IDFG supports mixed-initiative in- 
teraction, inheritance, modularity and reusability 
of interaction parts, and provides a user-specific 
level of abstraction, enabling the designer to "fly 
over the forest and select the appropriate tree". 

This model serves our needs because it can be 
combined in a straightforward manner with ED- 
FG, the DFG-based model that SEPDS supports. 
By tying description of interaction to application 
development, IDFG points directly to an objec- 
t oriented implementation of the application by 
SEPDS prototyping subsystem. 

Our next step is twofold: on one hand, we are 
studying the processing overhead that UIGE has 
on the overall SEPDS performance, and that of 
a user interface constructed with UIGE on the 
target application performance and on the other, 
we are building a knowledge base of design guide- 
lines that will be integrated with UIGE, so that 
these can be used by the prototyping subsystem 
of SEPDS in association with the description of 
the application. We expect the rule-based nature 
of IDFG to make this integration much easier. 

R E F E R E N C E S  

1. J.D. Foley, D.J.M.J. de Baar and K.E. Mullet, 
Coupling application design and user inter- 
face design. Proceedings of the CHI92 Con- 
ference: Striking a balance, May 3-7, 1992, 
Monterey, USA, pp 259-266. 

2. tL Bastide and P. Palanque, Petri Net Ob- 
jects for the design, validation and prototyp- 
ing of user-driven interfaces. Proceedings of 
INTERACT 90, The IFIP TC 13 Third In- 
ternational Conference on Human-Computer 
Interaction, August 27-31, 1990, Cambridge, 
U.K., pp 625-631. 

3. J. Bonar and B. Liffick, Communicating ~ th  
high-level plans. In Intelligent User Interfaces 
(J. Sullivan and S. Tyler eds), ACM Press, 
1991, pp 129-157. 

4. A.J. Dix and C. Rnnciman, Abstract models 
of interactive systems. In Proceedings of the 
British Computer Society Conference on Peo- 
ple and Computers: Designing the Interface 
(P. Johnson and S. Cook eds), Cambridge U- 
niversity Press, 1985, pp 13-22. 

5. A. Kameas, S. Papadimitriou and G. 
Pavlides, Coupling interaction specification 
with functionality description. Proceedings of 
the 1993 East-West International Conference 
on HCI, August 3-6, 1993, Moscow, Russia. 

6. K. Kavi, B. Buckles and V. Bhat, A formal 
definition of data t~ow graph models. IEEE 
Trans. on Computers, C-35(11), 1986. 

7. A. Levy, J. van Katwijk, G. Pavlides and F. 
Tolsma, SEPDS: A support environment for 
prototyping ddstributed systems. Proceedings 
of the ]st International Conference on System 
Integration, April 1990, New Jersey, USA. 

8. A. Marcus and 3_ van Dam, User Interface 
developments for the rdneties. IEEE Comput- 
er, 24(9), 1991, pp 52. 

9. D.R. Olsen, Push-down automata for user in- 
terrace management. ACM Trans. on Graph- 
ics, 3(3), 1984. 

10. D.R. Olsen, Propositional Production Sys- 
tems for dialog description. Proceedings of 
the CHI90 Conference: ~'~mpowering People, 
April 1-5, 1990, Seattle, USA, pp 57-63. 

11. S. Papadimitriou, A. Kameas, P. Fitsilis and 

daisy
Rectangle



622 A. Kameas et al. 

G. Pavlides, A new compression technique for 
too]s that use data-flow graphs to mode/dis- 
tributed teal-time applications. Proceedings 
d the 5th International Conference on Soft- 
ware Engineering and its Applications, De- 
c_ember 7-11 1992, Toulouse, Trance, pp 235- 
244. 

12. T. Winograd and F. Flores, Understanding 
Computers and Cognition: A new foundation 
for design. Ablex publishing, 1988, p 207. 

_ENV 

', s g l j  ~ s g 2  

sg I O~~_~g2OK 

(a) • gOK 

(b) 

......... ACT 

s OC) ; 
g1"3.~.~, reacti°n' 

sgl.3.1~ ~sgl.3.2 

OK 

, sgl.3OK 

V ! . . . . . . .  _ _ _ ,  

re•ai• 
gl j  

sg 1.3OKr~ - 

L sE 

sglOK 

Figure 3. The IDFGs that represent the applica- 
tion of the example 
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D e f i n i t i o n  o f  a c t o r  E N V  

goa l :  over(control valves) 
user aetmns: gen(inside valve 1, inside valve 2) 
system actions: gOK 
behavioural part 
rules: PG CENS 
control valves, inside valve 1 -> sgl 
control valves, inside valve 2 -> sg2 

PG CENE 
sglOK -> gOK 

sg2OK -> gOK 

D e f i n i t i o n  o f  a c t o r  A C T  

goa l :  sgl.3 

user actions: reaction(press ALR button, 
press SHD button) 

system actions: sgl.3OK 
behavioural part 

rules: PG EN 
sg 1.3, press ALR button -> sg 1.3.1 
sgl.3, press SHD button -> sgl.3.2 

OPG 
sgl.3.1OK -> sgl.3OK 
sgl.3.2OK -> sgl.3OK 

D e f i n i t i o n  o f  a c t o r  B U T T O N  

goa l :  < * * * > 
u s e r  a c t i o n s :  < * * * > (press ,  re lease)  

o b j e c t  c o n d i t i o n s :  normal,  se lected 

i n c o m m u n i c a t i o n :  < * * * > 

s y s t e m  ac t ions :  < * * * > O K  

o u t c o m m u n i c a t i o n :  ~ * * * > 

behavioural part 

rules: 
<goal>, press, normal -> selected 

D e f i n i t i o n  o f  a c t o r  L G T  

g o a l :  s g l .  1 
system actions: enLGT 
i n c o m r n u n i c a t i o n :  LGTstatus, LGTIit 
system actions: sgl. IOK 

o u t c o m m u n i c a t i o n :  setLGT 
behavioural part 
rules: 
sgl. 1, enLGT, LGTstatus -> setLGT 
sgl.1, enLGT, LGTIit -> sgl . lOK 
functional part 
Actor LGT is a communication actor that 
receives the state of the light from the ap- 
plication DFG and sets the light approp- 
riately. Consequently, the functional part 
is the mechanism that sets the light 

D e f i n i t i o n  o f  a c t o r s  A L R  a n d  S H D  

Actors ALR and SHD (and a sub-actor 
of actor CHK) function similarly, as 
buttons. Thus, they may inherit their 
functionality from another actor of type 
BUTTON. In such an actor, slots are 
represented with < *** >. For example, 
for actor ALR, INHERITS=button, with 
goal=sgl.3.1 (sound alarm), user 
actions=alarm, incommunication from 
the application DFG that sounds the 
alarm, system acfions=sgl.3.1OK and 
outcommunication to the DFG that 
sounds the alarm. Rules describe 
its functionality. Specifically, when 
the button is released, outcommunieation 
is sent to the alarm sounding DFG. When 
incommunication is received from the 
DFG, the subgoal that corresponds to the 
button is achieved 

<goal>, release, selected -> normal, <outcommunication> 

<goal>, <incommunication> -> <system actions>OK 

Figure 4. Description of the IDFGs of the example application 
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