
Microprocessing and Microprogramming 38 (1993) 615-623 615
North-Holland

IDFG: An interactive applications specification model with
phenomenological properties
A. Kameas a S. Papadimitriou b P. Pintelas c and G. Pavlides d

~Department of Computer Engineering & Informatics, University of Patras,
Patras 26110, Greece

bDepartment of Computer Engineering & Informatics, University of Patras,
Patras 26110, Greece

CDept. of Mathematics, Sector of Computat ional Mathematics & Informatics, University of Patras,
Patras 26110, Greece

dDepartment of Computer Engineering & Informatics, University of Patras,
Patras 26110, Greece

In this paper, we present a model based on Data-Flow Graphs called Interactive Data-Flow Graph (IDFG)
model.]'his model is used in the context of a CASE tool (SEPDS) for the specification of distributed interactive
applications. Our effort was towards designing a model that would bridge the gap between designers and users
perspective by providing the designers with a model that would permit them to "think in users terms". IDFG
combines elements of control and data models together with characteristics of the object (~iented paradigm,
adopting an action-based description of user goals. It is this focus on user actions that gives IDFG a phenomeno-
logical nature. In addition, IDFG can be combined with the underlying data model of SEPDS in a straightforward
manner, enabling the prototyping of distributed interactive applications. We show that IDFG meets many of the
requirements that designers have from current interactive application specification systems, such as user-specified
level of abstraction of interaction specification, support of mixed-initiative dialogues, modularity and reusabil-
ity of interaction. We conclude the paper by presenting a simple example of the application OF IDFG and by
presenting the state OF our research.

1. I n t r o d u c t i o n

The SEPDS (Software Environment for the
Prototyping of Distributed Systems) system is an
engineering f~amework for the prototyping of dis-
tributed systems. It provides an integrated set of
tools that assist the designers through the pro-
totyping, simulation and profiling phases of the
construction OF a distributed system [7]. Specifi-
cation OF interactive applications in SEPDS con-
sists OF two major phases: the specification of
the "workings" of the application and the spec-
ification of its interactive features. The tools of
the former subsystem were designed and imple-
mented based on the Extended Data-Flow Graph
(EDFG) concept, which is itself an extension OF
the Da ta - f low Graph (DFG) concept [6]. In this
paper, we will describe IDFG (Interactive Da ta -
Flow Graph) model, which is used by the tool-

s of the User Interface Generating Environment
(UIGE), to construct the user interface of the tar-
get (produced) application. A description of the
process of application specification can be found
in [5].

The scope of the design was to bridge the gap
that usually exists between the designers and
users model of an interactive application. To this
end, IDFG enables the designers "think in user-
s terms", thus allowing for consideration of the
users preferences and abilities [8] and support-
s the designers in specifying the interactive fea-
tures of the application in a non-technical way,
leading to a semi-automated user interface con-
struction process based on the semantics of the
application graph. In addition, integration and
combination of such a model with EDFG, the da-
m model that SEPDS uses for application speci-
fication, is straightforward [1].

daisy
Rectangle

616 A. Kameas et al.

In the specification of interactive applications,
both these models are used: IDFG models the be-
havior of application objects, while EDFG models
their functionality. In this way, designers do not
have to use additional effort to learn a new speci-
fication language, and the prototyping subsystem
of SEPDS is able to produce highly-interactive
applications with few changes.

The model we present combines features from
both state-based models (e.g. [4, 9]), which incor-
porate powerful control models, but do not ban-
cue data and user models well (such models are
adequate for the fine-grained, low-level specifica-
tion of user actions and action sequences, but are
hard to use by non-computer experts), and user-
oriented models (e.g. [3]) which focus on rep-
resenting interaction with interconnected plan-
s of various levels of detail and complexity, to
meet the needs of all the categories of users be-
tween novice and technically expert. Description
of the elements of the screen has been separat-
ed t~om the specification of actions that may be
performed with these dements, leading to a more
user-centered design. IDFG is action-oriented,
assigning to user actions well-defined semantics
based on the goal-based structuring of these ac-
tions, thus making the screen elements that repre-
sent these actions "invisible" (the ready- to-hand
phenomenological property [12]).

A model (Propositional Production Systems -
PPS) with similar characteristics was proposed
in [10]. PPS systems however, are inadequate for
our purpose for two reasons: they do not repre-
sent explicitly the user perspective and way of
thinking (although they permit abstractions of
the interaction to be formed), and they can not
be integrated in SEPDS without adjustments.

Both EDFG and IDFG can be proved equiva-
lent in expressiveness with Petri Net models that
use time stamps. Although Petri Nets have been
used before for representing interaction [2], IDFG
has certain representational advantages: first, it
is a more "compact" model, and thus, easier to
use by the non expert designer. In addition, in
IDFG we use semantic (and not technical) de-
scription of actor interaction (that is why links
are typed and labeled). Furthermore, in IDFG,
user actions and goals are explicitly represented;

the same is true for system actions and screen
condition. Finally, IDFG supports events caused
both by the user and the system (modelled as
user and system actions). This means that the
system could as well initiate the execution of cer-
tain tasks, thus laying the modeling base for the
specification of intelligent user interfaces.

In the next section, our contribution, the IDFG
model, is described along with its most important
properties. A discussion on the models properties
follows with an example of an application of the
model. The paper concludes with a presentation
of our research directions.

2. The IDFG model

An IDFG is a bipartite graph consisting of a set
L of links and a set A of actors. Actors are the
computational components, while links are used
for dark transportation. There also exists a set E
of directed arcs which connect actors to links and
links to actors. The function each actor performs
consists of two parts: the behavioural part, which
is made up of rules, and the functional part, which
contains code segments. For every rule of the be-
havioural part, there exist a set of left-hand-side
conditions that must hold for it to fire, and a set
of right-hand side conditions that result from the
firing. These are represented by the PRE and the
POST fields, respectively, of the actor. A restric-
tion that applies is that no two tokens of the same
link may be consumed in the same actor firing.
The code segments of an actor (which are repre-
sented with field FUN) are EDFG actors; this is
how IDFG can be integrated with the underlying
model of SEPDS.

Links correspond to conditions; those that cur-
rently contain tokens describe the current situa-
tion. Links are typed (mainly to distinguish be-
tween the components of a situation). The types
of links are contained in the set { user actions,
system actions, object conditions, goals, incom-
munica~ion, outcommunication }. To improve ex-
pressibility, more link types can be added to this
set.

Two additional constraints are imposed on the
system:

• every actor mast have a link of type user

daisy
Rectangle

IDFG 617

action or system action in its PRE, which
means that state transitions take place only
as a consequence of an event (user or system
action)

• each user action must belong to a goal-
leading sequence, that is why, each actor
has also a link of type goal in its P R E and
P O S T (a goal link in the POST is used to
signal successful goal achievement)

Actors can be of two kinds: action actors and
context actors. With each action offered by the
application to its users (that is, with each com-
mand that is transferred by the user interface
to the underlying application), an action actor
is associated. The number of action actors is fi-
nite and equal to all the commands supported by
the application. In order for such an actor to be
ready-to-fire, all links in its PRE except user cf
system action links must already contain token-
s. This means that the user interface must have
reached the appropriate state (as represented by
the condition]inks) and the actor must belong in
one of the contexts the user is currently working
with (as represented by the goal]ink) for the user
action to be available (any missing]inks are in-
terpreted as "don' t care" conditions). The effects
Of its execution are modelled with the production
of tokens in the actor's POST.

To model context Of operation and to support
the goal-based structuring of user actions, we use
context actors. Their functionality is to correct-
by interpret user actions in order to appropriately
decompose user goals into subgoals, so that even-
tually the correct action actor will fire. To in-
fer the context of operation, these actors contain
rules that fire depending an the user interface ac-
tion that the user performs. Context actors may
be formed by combining action actors or context
actors; this process may be applied an adequate
number of times so as to represent all user goals
and subgoals.

Commands are modelled with actor firings,
and sequences Of commands with actor firing se-
quences (graphs). Any portion Of an IDFG could
be executed if tokens were created on the PRE of
the first actor of the sequence. Thus, if we were to
start the system from an arbitrary situation, we

would have to provide a mechanism that would
create tokens on the links of the actors that must
be fired first.

To transparently support interaction across dis-
tributed contexts, we require that there exists one
separate IDFG for each autonomous application
process. In such a system, we have to model the
effects that processes of this kind may have on one
another. To this end, we use a special link type,
the oommunication type. In effect, there exist /n_
communication and outeommunication link types
to account for the direction of communication.
The actors that contain rules that result in inter-
contextual communication are called oammunica-
~ion actors [11]. On the other hand, links of type
system action are used to model system-initiated
communication among actors of the same IDFG.

2.1. Actor composition
When context actors are constructed, the con-

struction process must be defined, together with
the]ink types and the execution semantics of the
resulting actor. As far as goals and user and sys-
tem actions are concerned, lower level goals are
derived from user or system actions and goals of
the next higher level. To achieve such a trans-
formation when a context actor is formed, we use
Primitive Graphs (PGs) to specify the type of the
context actor.

Actor composition is a model property that en-
ables the designer define subgraphs that would
correspond to user goals, with the context Of us-
er actions encapsulated in their structure. These
subgraphs have many valuable properties, like
integral design and execution, incremental goal
representation, reusability of interaction portion-
s, and may be used for the automated production
Of user interfaces which are specified by the de-
signer in a goal-structured way.

2.2. Types of context actors
PGs are special actors with well-defined execu-

tional semantics, which represent basic operations
that come up often enough to make us represen-
t them in a distinct way. The PGs that we will
use are: And PG (APG), Or PG (OPG), Not PG
(NPG), Sequence Start (SEQS), Sequence Con-
tinne (SEQC), Sequence End (SEQE), Enable

daisy
Rectangle

618 A. Kameas et aL

(SA) ISA)

Figure 1. The four types of context actors used
in IDFG model

(EN), Repeatedly Enable (REN), Concurrently
Enable Start (CENS) and Concurrently Enable
End (CENE) (their functionality can be deduced
f~om the example at section 3.4), while some of
them are analytically described in [11]. PGs may
be used to model link combinations and actor in-
terrelation and are needed because complex ac-
tors model situations that are difficult to repre-
sent analytically.

Context actors (depicted in figure 1) are of the
following types (in all figures containing IDFGs,
we have used thick circles to represent user ac-
tion links, plain circles to represent other links,

rectangles to represent actors, double-line rectan-
gles to represent EDFG actors, filled rectangles to
represent communication actors and round-edge
rectangles to represent PGs):

Sequence (SA): this actor decomposes a high-
er level goal and action to a lower level set of goals
that must be achieved sequentially. After the se-
quence is initiated (as signalled by PG SEQS),
each actor in the sequence is ready to fire. An
actor fires after the appropriate event takes place
and the previous actor has successfully terminat-
ed execution (PG SEQC). The construct is exited
after the last actor in the sequence has terminated
execution successfully (PG SEQE).

O n e - o u t - o f - m a n y (OMA): this actor de-
composes a higher level goal and action to a lower
level set of goals, one of which will eventually be
achieved (this situation is equivalent to providing
the user with different decision paths). All actors
are ready to fire (as signalled by PG EN); the one
that will eventually fire is determined by the nex-
t event. The construct is exited when (me actor
terminates execution successfully (PG OPG).

A l l - independen t -o f - sequence (AISA): this
actor decomposes a higher level goal and action to
a lower level set of goals, all of which must eventu-
ally be achieved, but the sequence of achievemen-
t is not important (this situation is equivalent to
providing the user with alternative decision path-
s). All actors are ready to fire; the firing sequence
is determined by the next event (PG REN). The
construct is exited when all actors have terminat-
ed execution successfully (PG APG).

Concurrent (CA): this actor decomposes a
higher level goal and action to a lower level set
of goals, one or all of which will eventually be
achieved, but the sequence of achievement is not
important (the construct is initiated with PG
CENS). The difference here is that subgoals may
be achieved concurrently, enabling the user to
work with several contexts at the same time. The
construct is exited when all IDFGs terminate ex-
ecution successfully (PG CENE).

3. Application of the model

In this section we discuss some general proper-
ties of IDFG model and present an example of its

daisy
Rectangle

IDFG 619

application.

3.1. A b s t r a c t i o n and inhe r i t ance
Inheritance, as contrasted with composition

which is a model property, is an implementation
property. In IDFG, inheritance is incorporated
by abstracting away the functionality of actors,
much like in the object-oriented paradigm. To
incorporate inheritance, we use field INHERITS,
which may be used to represent whether an actor
inherits the functionality of one or more classes
of actors (multiple inheritance), or is a primitive
one.

Abstraction can be used to improve reusability
when the specified user interface will be imple-
mented by the system. Reusability is achieved by
using slofs in the PRE and POST of the actors.
Slots are also typed, and can accept rinks of the
same type only. In this way, designers will not
have to start f~om scratch each time they pro-
duce a new application. Conversely, subgraphs
that represent user goals at any level can be s-
tored in a library and reused or adapted to the
needs of the new application.

3.2. Prototyping of applications
Prototyping of applications is a task of SEPDS,

and therefore its description is not entirely within
the context of this work; we will however, give an
outline of the process, while more can be found
in [7].

SEPDS supports the top-down refinement of
system prototypes; this process consists of two
steps: object (actor) refinement and functional
refinement. In addition SEPDS supports the par-
titioning of the prototype in order to find a more
appropriate size of objects and exploit the par-
allelism inherent in the application. The appli-
cation specification models supported by SEPDS
offer the appropriate constructs (for example, ac-
tor composition, inheritance, actor abstraction,
PGs etc) to support these processes. The proto-
typing subsystem of SEPDS consists of the DFG
Modeler and the Template Manager. The former
provides the tools for building and maintaining a
DFG, while the latter contains tools for maintain-
ing a software base and for building an executable
prototype. Note the key role of PGs in prototyp-

ing: the designer must eventually program the
functional part of actors (or use an actor from
the actor base); PGs however, are code segments
automatically provided by the system.

For example, in IDFG, we assume that there
exists an ezternal event-handler, (EEH) which
gets user input and sends it to the other IDFGs.
EEH should not wait for response to the token
it communicates; instead, it must communicate
a token each t/me a user action is recorded and
Menti~ed.

3.3. The phenomenological nature of I D F G
model

The interaction specification model must help
the designers transfer effectively the model of the
application in their minds to the end-users of the
target application. That is why it must enable
the designers think in users terms. When using
a system, users have in mind a goal they want to
achieve, and try to do that through a sequence
of operations that the system supports. If the
system is interactive, users adapt their next Ol>-
e.ration to the effect that the last (or a sequence
ending with the last) produced. One cannot help
noticing a recursion in this description: to achieve
the overall effect, users must achieve intermediate
effects.

Defini t ion 1. Act ion: every operation user-
s perform, which may affect their goal-pursuing
strategy; usually, each action is reflected in the
user interface. The set of actions includes al-
l the operations supported by the user interface
and the application, as well as those actions that
may be taken by the system itself. Subsequences
of actions lead to the achievement of subgoals,
whether users intended to pursue them or not.

The emphasis must be placed on the availabilty
of actions: users in every moment think of avail-
able actions that will lead to their goal. At any
moment, a set of actors (the actor-ready fist) con-
tain tokens in all their PRE rinks except the ac-
tion rink. These actors represent the actions that
are available to the user (or the actions that the
system may take).

Traditional DFG models interpret the notion
of state as the distribution of tokens on the DFG
finks. Our model extends this notion:

daisy
Rectangle

620 A. Kameas et al.

VALVE I

0 © 0
G Y R

QUE ALE
RY RT

[SNUTDOWN

VALVE 2

0 0 0
G Y R

QRU•y ALE
RT

SHUTDOWN I

I REPORT SCREEN I

Figure 2. The user interface of the example ap-
plication

Defini t ion 2. S ta te is the set of actors in the
actor-ready list, ~ equivalently, the set of user or
system actions that the actors in the actor-ready
list represent. Since these actions correspond to
goals in a lower-level, we may equivalently say
that state is represented with the set of goals
that may be achieved as a consequence of user
of system actions permitted by the actors in the
actor-ready list.

Def in i t ion 3. S tate t rans i t i ons occur as a
consequence of an actor firing which causes the
output of tokens in the actors OFS links, mod-
ifying the actor-ready list. Note that although
an actor firing may affect links of object condi-
tion type, these are invisible, as far as the user is
concerned.

Since, however, an actor firing depends on it-
s PRE, it is dear that among a set of otherwise
identical actors that are ready to fire (the actor-
ready list), the one that fires is determined by the
link of type user action. That is why we claim
that our model has phenomenological properties
[12]. Note in addition, that the firing actor may
be determined also by a link of type system ac-
tion. This enables us to model systems where
state transitions may occur independently of user
actions, such as knowledge-based systems (where
the system itself may initiate a phase of inter-
action) and real-time systems (where the system
may have to take default actions on the absence of
human response within a pre-specified time lira-

it). In order to correctly recognize the context of
the next event, each independent IDFG has its
own locus of control, which is used to determine
the next actor that will fire. Fkrthermore, this
property can be used for the resolution of firing
conflicts: all actors that can eventually fire, do
so, and the consequences of firing appear in the
graph in the form of a new marking.

To construct an application using IDFG, a de-
signer must think of the goals and subgoals that
a user may achieve using the application, the ac-
tions that need to be made available to the us-
er, and the action sequences that lead to these
goals. The objects affected by users actions are
directly dependent on the context of operation,
and thus are not so important (these are raninly
used to represent screen effects of user actions,
and not as carriers of semantic information). De-
signers are therefore forced to think in a more
"goal-oriented" and "goal-efficient" way, which
we believe, comes closer to a users way of think-
ing when using an application.

3.4. An e x a m p l e
To demonstrate the capabilities of IDFG, we

will use it to describe a simple interactive appli-
cation, where a user checks two screens that show
the condition of two ~dlVeS and acts according-
ly (figure 2). Each screen contains three lights:
green light means that valve is OK, yellow light
means that valve is not functioning in its full ca-
pability and red light means that valve is malfunc-
tioning. The user may react to valve condition by
first querying a database about ~alve condition
readings and then either sounding an alarm, or
shuting down the valve. Although the two valves
reside in remote sites, the user can handle them
concurrently. To keep the application simple, we
assume that the system imposes no real-time re-
quirements (m the user.

Figure 3.a shows that the user may work with
any of two screens (context actor of type CA is
used for actors V1 and V2; note that at this level
of design, the location of actors is not importan-
t). To represent the functionality of each screen,
each actor is analyzed (figure 3.b). It seems that
(context actor of type SA) first a light is turned
on and subsequently the user must press check

daisy
Rectangle

IDFG 621

button (communication actors LGT and CHK,
each of which must contain an EDFG actor) and
then act (context actor ACT of type OMA) by
pressing either alert or shutdown button (SEPDS
actors ALR and SHD in figure 3.c, respectively).

Figure 4 contains the description of some of the
actors of figure 3.

4. Conclusions

We have described IDFG, a DFG-based model
that can be used for the specification of inter-
action features of distributed applications. This
model explicitly represents events (user and sys-
tem actions), event effects (object conditions)
and user plans (goals), enabling the designers
to describe apphcations from the users perspec-
five. Although IDFG combines state represen-
tation with rule-based description of execution,
emphasis is placed on availability of actions to
the user, giving this model a phenomenological
nature. IDFG can be proved equivalent to Petri
Net models, and in addition, it is more expressive
and easy to use by the non-technical designer.

Furthermore, by integrating data, control and
user models, IDFG supports mixed-initiative in-
teraction, inheritance, modularity and reusability
of interaction parts, and provides a user-specific
level of abstraction, enabling the designer to "fly
over the forest and select the appropriate tree".

This model serves our needs because it can be
combined in a straightforward manner with ED-
FG, the DFG-based model that SEPDS supports.
By tying description of interaction to application
development, IDFG points directly to an objec-
t oriented implementation of the application by
SEPDS prototyping subsystem.

Our next step is twofold: on one hand, we are
studying the processing overhead that UIGE has
on the overall SEPDS performance, and that of
a user interface constructed with UIGE on the
target application performance and on the other,
we are building a knowledge base of design guide-
lines that will be integrated with UIGE, so that
these can be used by the prototyping subsystem
of SEPDS in association with the description of
the application. We expect the rule-based nature
of IDFG to make this integration much easier.

R E F E R E N C E S

1. J.D. Foley, D.J.M.J. de Baar and K.E. Mullet,
Coupling application design and user inter-
face design. Proceedings of the CHI92 Con-
ference: Striking a balance, May 3-7, 1992,
Monterey, USA, pp 259-266.

2. tL Bastide and P. Palanque, Petri Net Ob-
jects for the design, validation and prototyp-
ing of user-driven interfaces. Proceedings of
INTERACT 90, The IFIP TC 13 Third In-
ternational Conference on Human-Computer
Interaction, August 27-31, 1990, Cambridge,
U.K., pp 625-631.

3. J. Bonar and B. Liffick, Communicating ~ th
high-level plans. In Intelligent User Interfaces
(J. Sullivan and S. Tyler eds), ACM Press,
1991, pp 129-157.

4. A.J. Dix and C. Rnnciman, Abstract models
of interactive systems. In Proceedings of the
British Computer Society Conference on Peo-
ple and Computers: Designing the Interface
(P. Johnson and S. Cook eds), Cambridge U-
niversity Press, 1985, pp 13-22.

5. A. Kameas, S. Papadimitriou and G.
Pavlides, Coupling interaction specification
with functionality description. Proceedings of
the 1993 East-West International Conference
on HCI, August 3-6, 1993, Moscow, Russia.

6. K. Kavi, B. Buckles and V. Bhat, A formal
definition of data t~ow graph models. IEEE
Trans. on Computers, C-35(11), 1986.

7. A. Levy, J. van Katwijk, G. Pavlides and F.
Tolsma, SEPDS: A support environment for
prototyping ddstributed systems. Proceedings
of the]st International Conference on System
Integration, April 1990, New Jersey, USA.

8. A. Marcus and 3_ van Dam, User Interface
developments for the rdneties. IEEE Comput-
er, 24(9), 1991, pp 52.

9. D.R. Olsen, Push-down automata for user in-
terrace management. ACM Trans. on Graph-
ics, 3(3), 1984.

10. D.R. Olsen, Propositional Production Sys-
tems for dialog description. Proceedings of
the CHI90 Conference: ~'~mpowering People,
April 1-5, 1990, Seattle, USA, pp 57-63.

11. S. Papadimitriou, A. Kameas, P. Fitsilis and

daisy
Rectangle

622 A. Kameas et al.

G. Pavlides, A new compression technique for
too]s that use data-flow graphs to mode/dis-
tributed teal-time applications. Proceedings
d the 5th International Conference on Soft-
ware Engineering and its Applications, De-
c_ember 7-11 1992, Toulouse, Trance, pp 235-
244.

12. T. Winograd and F. Flores, Understanding
Computers and Cognition: A new foundation
for design. Ablex publishing, 1988, p 207.

_ENV

', s g l j ~ s g 2

sg I O~~_~g2OK

(a) • gOK

(b)

......... ACT

s OC) ;
g1"3.~.~, reacti°n'

sgl.3.1~ ~sgl.3.2

OK

, sgl.3OK

V ! _ _ _ ,

re•ai•
gl j

sg 1.3OKr~ -

L sE

sglOK

Figure 3. The IDFGs that represent the applica-
tion of the example

daisy
Rectangle

IDFG 623

D e f i n i t i o n o f a c t o r E N V

goa l : over(control valves)
user aetmns: gen(inside valve 1, inside valve 2)
system actions: gOK
behavioural part
rules: PG CENS
control valves, inside valve 1 -> sgl
control valves, inside valve 2 -> sg2

PG CENE
sglOK -> gOK

sg2OK -> gOK

D e f i n i t i o n o f a c t o r A C T

goa l : sgl.3

user actions: reaction(press ALR button,
press SHD button)

system actions: sgl.3OK
behavioural part

rules: PG EN
sg 1.3, press ALR button -> sg 1.3.1
sgl.3, press SHD button -> sgl.3.2

OPG
sgl.3.1OK -> sgl.3OK
sgl.3.2OK -> sgl.3OK

D e f i n i t i o n o f a c t o r B U T T O N

goa l : < * * * >
u s e r a c t i o n s : < * * * > (press , re lease)

o b j e c t c o n d i t i o n s : normal, se lected

i n c o m m u n i c a t i o n : < * * * >

s y s t e m ac t ions : < * * * > O K

o u t c o m m u n i c a t i o n : ~ * * * >

behavioural part

rules:
<goal>, press, normal -> selected

D e f i n i t i o n o f a c t o r L G T

g o a l : s g l . 1
system actions: enLGT
i n c o m r n u n i c a t i o n : LGTstatus, LGTIit
system actions: sgl. IOK

o u t c o m m u n i c a t i o n : setLGT
behavioural part
rules:
sgl. 1, enLGT, LGTstatus -> setLGT
sgl.1, enLGT, LGTIit -> sgl . lOK
functional part
Actor LGT is a communication actor that
receives the state of the light from the ap-
plication DFG and sets the light approp-
riately. Consequently, the functional part
is the mechanism that sets the light

D e f i n i t i o n o f a c t o r s A L R a n d S H D

Actors ALR and SHD (and a sub-actor
of actor CHK) function similarly, as
buttons. Thus, they may inherit their
functionality from another actor of type
BUTTON. In such an actor, slots are
represented with < *** >. For example,
for actor ALR, INHERITS=button, with
goal=sgl.3.1 (sound alarm), user
actions=alarm, incommunication from
the application DFG that sounds the
alarm, system acfions=sgl.3.1OK and
outcommunication to the DFG that
sounds the alarm. Rules describe
its functionality. Specifically, when
the button is released, outcommunieation
is sent to the alarm sounding DFG. When
incommunication is received from the
DFG, the subgoal that corresponds to the
button is achieved

<goal>, release, selected -> normal, <outcommunication>

<goal>, <incommunication> -> <system actions>OK

Figure 4. Description of the IDFGs of the example application

daisy
Rectangle

